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Abstract 
 

There is currently no cure for Huntington's 

disease (HD) and no treatment proven to delay the onset 

or slow the progression of the disease. This Article 

discusses current research into the action mechanisms 

of HD. Since HD is caused by a single dominant gene 

encoding a toxic protein, gene silencing and autophagy 

rate increase will be considered with aim to ameliorate 

the disease by reducing the production and levels of the 

mutant protein.  

 

Several approaches will also be analyzed 

regarding neuronal survival and replacement. Inhibitors 

of ferroptosis will be indicated as protective in 

degenerative brain disorders, including HD. Potential 

future HD treatments and the associated clinical trials 

will be reviewed in detail. Lastly, latest research 

developments from supporting Huntington 

organizations will be summarized.  

 

 

 

AD: Alzheimer's disease; ASO: Allele-specific 

oligonucleotide; BBB: Blood-brain barrier; CAG: 

Cystosine-Adenine-Guanine; Cas: CRISPR-associated 

system; CNS: Central nervous system; CSF: 

Cerebrospinal fluid; CRISPR: Clustered Regularly 

Interspaced Short Palindromic Repeats; CT: Clinical 

trial; CUHDRS: Composite Unified Huntington's 

Disease Rating Scale;  DNA:  DeoxyriboNucleic Acid; 

FDA: (U.S.) Food & Drug Administration; FIH: First-

in-human; HD: Huntington's disease; HDI: Histone 

deacetylase inhibitors; HSG: Huntington Study Group; 

HTT: Huntington gene; Htt: Huntingtin protein; IHA: 

International Huntington Association; mHtt: mutated 

Htt; OLE: Open-label extension; PD: Parkinson's 

disease; PDI: Phosphodiesterase inhibitors; RNA: 

Ribonucleic acid; SMCI: Single-molecule counting 

immunoassay; TMS: Total motor score; wtHtt: wild-

type Htt. 
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-oOo- 

 

As discussed in previous Articles in this series, HD is a 

rare inherited, progressive, incurable, and fatal 

neurodegenerative disorder of the central nervous 

system. It is caused by a defective gene characterized 

by an excessive number of trinucleotide (Cystosine-

Adenine-Guanine) repeats - a part of the DNA code. 

The gene produces a protein of unknown function 

named Huntingtin, which is involved in the functioning 

of the nerve cells in the brain (neurons). When 

defective, the gene produces an abnormal or mutated 

form of this protein, which is toxic and causes selective 

loss of neurons. Notwithstanding the existence of 

several approved therapies for specific disease 

symptoms, there is currently no cure and there are no 

approved drugs that delay the onset or slow disease 

progression. There are, however, many new 

therapeutics currently undergoing clinical trials that 

target the disease at its origin by lowering the levels of 

the mutated protein. 

 

Current research directions in HD research include 

determining the exact mechanism of the disease, 

improving animal models to aid with research, testing 

of medications and their delivery to treat symptoms or 

slow the progression of the disease, and studying 

procedures such as stem-cell therapy with the goal of 

replacing damaged or lost neurons. These several 

threads will now be explored.  

 

 

  

Research into the action mechanisms of HD is focused 

on: 

 Identifying the functioning of the Huntingtin 

protein (Htt);  

 Determining how the mutant protein (mHtt) 

differs or interferes with Htt; and   

 Understanding the brain pathology that the 

disease produces. 

 

Research is conducted using in vitro methods, 

genetically modified animals (also called transgenic 

animal models), and human volunteers. Animal models 

are critical for understanding the fundamental 

mechanisms causing the disease and for supporting the 

early stages of drug development. 

 

The identification of the causative Huntington's gene 

(HTT) has enabled the development of many 

genetically modified organisms including nematodes 

(roundworms), Drosophila fruit flies, and genetically 

modified mammals including mice, rats, sheep, pigs, 

and monkeys that express mHtt, and develop 

progressive neurodegeneration with HD-like symptoms. 

 

Research currently being conducted uses many 

approaches to either prevent HD or slow its 

progression. In this regard, disease-modifying strategies 

can be broadly grouped into three categories: 

 

 Reducing the level of the mutant huntingtin 

protein (mHtt): This includes gene splicing 

and gene silencing;  

 Improving neuronal survival: This is 

accomplished by reducing the harm caused by 

the protein to specific cellular pathways and 

mechanisms (including protein homeostasis 

and histone deacetylase inhibition); and  

 Replacing lost neurons: Developing 

strategies to accomplish this purpose. 

 

In addition, novel therapies to improve brain 

functioning are under development; they seek to 

produce symptomatic rather than disease-modifying 

therapies, and include phosphodiesterase inhibitors 
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Reducing Huntingtin Production Increasing Huntingtin Clearance 

Improving Cell Survival 

Neuronal Replacement 

Ferroptosis 

(PDI). 

 

 

 

Since HD is caused by the single dominant gene (HTT) 

encoding the toxic protein (Htt), gene silencing aims to 

reduce the production of the mutant protein (mHtt), 

Gene silencing experiments in mouse models have 

shown that when the expression of mHtt is reduced, 

symptoms improve. 

 

The safety of RNA interference, and allele-specific 

oligonucleotide (ASO) methods of gene silencing has 

been demonstrated in mice and the larger primate 

macaque brain. Allele-specific silencing attempts to 

silence mHtt while leaving wild-type Htt untouched. 

One way of accomplishing this is to identify 

polymorphisms present on only one allele and produce 

gene silencing drugs that target polymorphisms in only 

the mutant allele. Begun in 2015, the first gene 

silencing trial involving humans with HD tested the 

safety of IONIS-HTTRx. It was produced by Ionis 

Pharmaceuticals and led by University of California in 

Irvine, Institute of Neurology.  

 

Using a novel "single-molecule counting immunoassay” 

(SMCI), mHtt was detected and quantified for the first 

time in cerebrospinal fluid (CSF) from HD mutation-

carriers. It provided a direct way to assess whether 

huntingtin-lowering treatments are achieving the 

desired effect. A phase 3 trial of this compound, 

renamed Tominersen, sponsored by Roche 

Pharmaceuticals, began in 2019 but was halted in 2021 

after the safety monitoring board concluded that the 

risk-benefit balance was unfavorable. 

 

A huntingtin-lowering gene therapy trial, run by 

Uniqure, began in 2019. Several trials of orally 

administered huntingtin-lowering splicing modulator 

compounds have since been announced. Gene splicing 

techniques are being looked at to try to repair a genome 

with the erroneous gene that causes HD, using tools 

such as CRISPR/Cas9. 

 

 

 

Another strategy to reduce the level of mHtt is to 

increase the rate at which cells are able to clear it. As 

mHtt (and many other protein aggregates) are degraded 

by autophagy, increasing the rate of autophagy has the 

potential to reduce levels of mHtt and thereby 

ameliorate disease.  

 

Pharmacological and genetic inducers of autophagy 

have been tested in a variety of HD models, many of 

which have been shown to reduce mHtt levels and 

decrease toxicity. 

 

 

 

Among the approaches aimed at improving cell survival 

in the presence of mHtt are: 

 

 Correcting transcriptional regulation: This 

uses histone deacetylase inhibitors (HDI); 

 Modulating huntingtin's aggregation;  

 Improving metabolism and mitochondrial 

function; and  

 Restoring synaptic function. 

 

 

 

Stem-cell therapy is used to replace damaged neurons 

by transplantation of stem cells into the affected regions 

of the brain. Experiments in animal models (rats and 

mice only) have yielded positive results. 

 

Whatever their future therapeutic potential, stem cells 

are already a valuable tool for studying HD in the 

laboratory. 

 

 

 

Ferroptosis is a form of regulated cell death 
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Clinical Trials 

Potential Future HD Treatments 

characterized by the iron-dependent accumulation of 

lipid hydroperoxides to lethal levels. ALOX5-mediated 

ferroptosis acts as a cell death pathway upon oxidative 

stress in HD. 

 

Inhibitors of ferroptosis are protective in models of 

degenerative brain disorders, including Parkinson's 

disease (PD), Huntington's disease, and Alzheimer's 

disease (AD). 

 

 

 

Clinical trials (CTs) are prospective biomedical or 

biobehavioral research studies on human participants 

designed to answer specific questions about biomedical 

or biobehavioral interventions, including new 

treatments (such as novel vaccines, drugs, dietary 

choices, dietary supplements, and medical devices) and 

known interventions that warrant further study and 

comparison. They are part of clinical research at the 

heart of all medical advances. They look at new ways to 

prevent, detect, or treat diseases by new drugs or new 

combinations of drugs, new surgical procedures or 

devices, or new ways to use existing treatments. They 

can also look at other aspects of care, such as improving 

the quality of life for people with chronic illnesses. 

Their goal is to determine if a new test or treatment is 

safe and effective. Some CTs involve healthy subjects 

with no pre-existing medical conditions, others pertain 

to people with specific health conditions who are 

willing to try an experimental treatment. Pilot 

experiments are conducted to gain insights for design of 

the CTs to follow. A fuller discussion of CTs can be 

found in Article III of this series and in its Sidebar. 

 

The number of CTs related to various therapies and 

biomarkers for HD that are currently recruiting may 

vary depending on the particular date at which the 

website clinicaltrials.gov is searched. Thus, in 2020, 

that number was 197. By 1 August 2024, that number 

grew to 258, an increase of ~ 30%, pointing to a 

heightened interest in HD. They generate data on 

dosage, safety, and efficacy. They can vary in size and 

cost, and can involve a single research center or 

multiple centers, in one or in multiple countries. The 

clinical study design aims to ensure the scientific 

validity and reproducibility of the results. There are two 

goals to testing medical treatments: (1) To learn 

whether they work well enough, called "efficacy" or 

"effectiveness" and (2) to ascertain whether they are 

safe enough, called "safety". Neither is an absolute 

criterion and both safety and efficacy are evaluated 

relative to how the treatment is intended to be used, 

what other treatments are available, and the severity of 

the disease or condition. In all cases, the benefits must 

outweigh the risks. 

 

Trialled compounds that have failed to prevent or slow 

the progression of HD include: Coenzyme Q10, 

Creatine, Dimebon, ethyl-EPA, Minocycline, 

Phenylbutyrate, Remacemide, and Riluzole.  

 

 

 

Table 1 below is an overview of potential future HD 

treatments:

  

 

Therapy 

 

Sponsor 

 

Development 

 

Administration 

 

Allele specificity Dosing 

frequency 

RNA targeting 

ASO 

     

CUG7 Bio-Marin Pre-clinical Undisclosed Allele-specific: 

CAG repeats 

Multiple doses 

Tominersen Hoffman-

Laroche 

Phase 3  Intrathecal 

injection 

Allele non-

specific 

Multiple doses 

TTX-3360  Triplet 

Therapeutics 

Pre-clinical Intracerebro-

ventricular 

Not applicable Unknown 
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infusion (mice) 

WVE- 

120102/120101  

Wave life 

Sciences 

Phase 1b/2a Intrathecal 

injection 

Allele specific: 

WVE-120101,2 

rs362307, 31 

SNP 1, 2  

Multiple doses 

WVE-003  Wave life 

Sciences 

Pre-clinical Undisclosed Allele specific: 

SNP 3 

Undisclosed 

Multiple doses 

RNAi      

AAV.shHD2.1  Spark Pre-clinical Intracranial 

injection 

(delivered by 

AAV1) 

Allele non-

specific 

Single dose 

AMT-130  UniQure Phase 1b/2a Intrastriatal 

injection 

(delivered by 

AAV5) 

Allele non-

specific 

Single dose 

VY-HTT01 Voyager Pre-clinical Intracranial 

injection 

(delivered by 

AAV1) 

Allele non-

specific 

Single dose 

Small molecules      

Branaplam  Novartis 

Pharmaceutical 

Pre-clinical Oral Allele non-

specific 

Multiple doses 

(weekly) 

PTC518  PTC Phase 1 Oral Allele non-

specific 

Multiple doses 

(weekly) 

Unnamed  Nuredis Pre-Clinical Gene deletion in 

animal model, 

intracerebro-

ventricular bolus 

injection 

Allele-specific: 

elongation co-

factors required 

for expanded 

CAG repeat 

transcription 

Single dose 

DNA targeting       

Zinc protein 

fingers 

     

TAK-686  Takeda & 

Sangamo 

Pre-Clinical Intrastriatal 

injection 

Allele-specific: 

expanded CAG 

repeats 

Single dose 

ZF-KOX1 European 

Research 

Council 

(undertaken by 

Imperial College 

London/Fingers

4Cure) 

Pre-Clinical Intraventricular 

injection 

Allele-specific: 

expanded CAG 

repeat 

Single dose 

CRISPR/Cas9      

Unnamed Harvard 

University 

Pre-Clinical N/A (in cell lines) 

– theoretically 

Allele-specific: 

SNPs related to 

mHtt 

Single dose 

Unnamed NIH and NSF, 

China 

(undertaken by 

Emory 

University) 

Pre-Clinical Intrastriatal 

injection 

Allele non-

specific 

Single dose 

Stem cell      

Autologous 

stem/stromal 

cells  

Regeneris 

Medical 

N/A (in clinical 

trial) 

Intravenous 

injection 

Not applicable Unknown 

Cellavita HD  Azidus (Brazil) Phase 2/3 Intravenous Not applicable Multiple doses 
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infusion 

Fetal stem cell 

transplant 

Health & Care 

Research Wales 

(undertaken by 

Cardiff 

University) 

Phase 1 Intrastriatal 

injection 

Not applicable Single dose 

Antibody      

ANX005 Annexon, Inc Phase 3 Intravenous 

injection 

Not applicable Multiple doses 

C6-17 AFFiRiS Pre-Clinical Unknown Allele-specific – 

binds to HTT 

protein near the 

aa586 caspase-6 

cleavage region 

Unknown 

INT41  Vybion Inc Pre-Clinical Intrastriatal 

injection (mice) 

Allele-specific: 

binds to mHtt 

fragments 

Single dose 

VX15/2503  Vaccinex, Inc Phase 2 Intravenous 

injection 

Not applicable Multiple doses 

W20 National 

Natural Science 

Foundation of 

China, National 

Science and 

Technology 

Major Projects 

of New Drugs 

Pre-Clinical Intracerebro-

ventricular 

injection (mice) 

Allele-specific: 

binds to mHtt 

fragments 

Single dose 

Other small 

molecules 

     

Fenofibrate  University of 

California, 

Irvine 

Phase 2 Oral Not applicable Multiple doses 

Laquinimod  Teva 

Pharmaceutical 

Industries Ltd 

Phase 2 Oral Not applicable Multiple doses 

Neflamapimod EIP Pharma Inc Phase 2 Oral Not applicable Multiple doses 

Nilotinib  Georgetown 

University 

Phase 1 Oral Not applicable Multiple doses 

PBT2  Prana 

Biotechnology 

Ltd 

Phase 2 Oral Not applicable Multiple doses 

Pridopidine  Prilenia 

Therapeutics 

Phase 3 Oral Not applicable Multiple doses 

SAGE-718  Sage 

Therapeutics 

Phase 1 Oral Not applicable Multiple doses 

SRX246  Azevan 

Pharmaceutical 

Phase 2 Oral Not applicable Multiple doses 

Varenicline  University of 

Auckland and 

University of 

Otago 

Open label 

study 

Oral Not applicable Multiple doses 

 

Source: Mackenzie, Ferguson, Connor et al., 2022, and Article III. 

 

Table 1: Overview of potential future HD treatments 
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Latest news from supporting Huntington 
organizations 

 

 

 

Below are latest news from some supporting HD 

organizations. They are intended to be indicative only, 

and do not represent the spectrum of latest 

developments across the world of HD. 

 

International Huntington Association 

 

The International Huntington Association (IHA) reports 

results of the following three programs: 

 

 From UniQure: UniQure, a gene therapy 

company advancing transformative therapies 

for patients with severe medical needs, is 

conducting two multi-center Phase I/II clinical 

trials of AMT-130 in the U.S. and Europe/U.K. 

for the treatment of HD. On July 9, 2024, it 

announced updated interim data that reportedly 

demonstrate a statistically significant, dose-

dependent slowing of the progression of HD 

and lowering of NfL in the CSF at 24 months. 

The data evidenced a potential long-term 

clinical benefit and reduction of a key marker 

of neurodegeneration. Based on the 

encouraging data from this interim analysis, 

uniQure anticipates the following next steps: A 

multi-disciplinary RMAT meeting with the 

(U.S.) Food and Drug Administration (FDA) to 

discuss potential expedited clinical 

development pathways and accelerated 

approval and explore AMT-130 in 

combination with immunosuppression. 

  

 From Wave Life Sciences: Wave Life 

Sciences announced positive results from 

SELECT-HD, its Phase 1b/2a placebo-

controlled trial evaluating the investigational 

therapy WVE-003. These results reportedly 

demonstrate that WVE-003 selectively lowers 

toxic, mutant huntingtin (mHtt) protein and 

preserves healthy, wild-type huntingtin (wtHtt) 

protein for individuals with HD. Based on this 

encouraging result, Wave Life Sciences will 

discuss with regulators the potential for 

accelerated approval as well as an open-label 

extension (OLE) study for SELECT-HD. 

 

 From PTC Therapeutics: PTC Therapeutics, 

Inc. is developing a potential treatment for HD 

based on their splicing platform technology. It 

employs PTC518, a small molecule that can be 

taken orally, to reduce the production of the 

mutated huntingtin protein (mHtt) that leads to 

injury and death of neurons, resulting in 

disease progression. The orally bioavailable 

small molecule penetrates the blood-brain 

barrier (BBB), is selective, titratable, and not 

effluxed – which are key differentiation 

properties. On June 20, 2024, PTC shared 

interim results from the Phase 2 PIVOT-HD 

study of PTC518, showing a dose-dependent 

lowering of mHtt in the blood and 

cerebrospinal fluid (CSF). In addition, 

favorable trends were demonstrated on several 

relevant HD clinical assessments including 

Total Motor Score (TMS) and Composite 

Unified Huntington's Disease Rating Scale 

(CUHDRS). Furthermore, following 12 

months of treatment, PTC518 continues to be 

safe and well tolerated. In addition, PTC 

announced that the FDA has lifted the partial 

clinical hold on the program based on review 

of the PIVOT-HD data. 

 

Huntington's Study Group 

 

On August 18, 2023, the Huntington Study Group 

(HSG) shared that the Phase 3 pivotal KINECT®-HD 

study it conducted resulted in the FDA's approval of 

Neurocrine’s drug, Valbenazine, for the treatment of 

chorea associated with HD. Valbenazine, a novel 

vesicular monoamine transporter 2 (VMAT2) inhibitor, 
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Conclusions and take-aways reduced HD-related chorea symptoms as early as two 

weeks after the initial dose and was well tolerated. 

 

University of California, San Francisco 

 

The University of California, San Francisco, reported 

on 2 studies: 

 

 Clinical trial of AMT-130: This trial is a Phase 

I/II, randomized, multicenter, multiple dose, 

double-blind, imitation surgery, first-in-human 

(FIH) study of AMT-130 in patients with early 

manifest HD (see also UniQure above). It was 

designed to establish safety and proof-of-

concept (PoC).  

 

 Enroll-HD: This is a longitudinal, 

observational, multinational study that 

integrates two former HD registries-

REGISTRY in Europe, and COHORT in North 

America and Australasia-while also expanding 

to include sites in Latin America. The primary 

objective is to develop a comprehensive 

repository of prospective and systematically 

collected clinical research data (demography, 

clinical features, family history, genetic 

characteristics) and biological specimens 

(blood) from individuals with manifest HD, 

unaffected individuals known to carry the HD 

mutation or at risk of carrying the HD 

mutation, and control research participants 

(e.g., spouses, siblings or offspring of HD 

mutation carriers known not to carry the HD 

mutation). Enroll-HD is conceived as a broad-

based and long-term project to maximize the 

efficiencies of non-clinical research and 

participation in clinical research. With more 

than 150 active clinical sites in 23 countries, 

Enroll-HD is now the largest HD database 

available and is accessible to any interested 

researcher. 

 

 

 

 

 Research into the mechanism of HD is focused 

on: Identifying the functioning of the 

huntingtin protein (Htt) and how its mutated 

form (mHtt) differs or interferes with it. It also 

involves the brain pathology that the disease 

produces. 

 

 Research is conducted using in vitro methods, 

genetically modified animals (also called 

transgenic animal models), and human 

volunteers. Animal models are critical for 

understanding the fundamental mechanisms 

causing the disease and for supporting the 

early stages of drug development. 

 

 The identification of the causative gene has 

enabled the development of many genetically 

modified organisms and mammals that express 

mutant huntingtin and develop progressive 

neurodegeneration and HD-like symptoms. 

 

 Research is being conducted using many 

approaches to either prevent HD or slow its 

progression. Disease-modifying strategies can 

be broadly grouped into three categories: 

Reducing the level of the mutant huntingtin 

protein; improving neuronal survival; and 

replacing lost neurons. In addition, novel 

therapies to improve brain functioning are 

under development.  

 

 Since HD is caused by a single dominant gene 

encoding a toxic protein, gene silencing aims 

to reduce the production of the mutant protein, 

Gene silencing experiments in mouse models 

have shown that, when the expression of mHtt 

is reduced, symptoms improve.  

 

 The safety of RNA interference, and allele-
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